3.86 \(\int \frac{(d-c^2 d x^2)^{3/2} (a+b \cosh ^{-1}(c x))}{x^5} \, dx\)

Optimal. Leaf size=321 \[ \frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{c x-1} \sqrt{c x+1}}-\frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{c x-1} \sqrt{c x+1}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{3 c^4 d \sqrt{d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{4 \sqrt{c x-1} \sqrt{c x+1}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{c x-1} \sqrt{c x+1}} \]

[Out]

-(b*c*d*Sqrt[d - c^2*d*x^2])/(12*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (5*b*c^3*d*Sqrt[d - c^2*d*x^2])/(8*x*Sqrt
[-1 + c*x]*Sqrt[1 + c*x]) + (3*c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(8*x^2) - ((d - c^2*d*x^2)^(3/2
)*(a + b*ArcCosh[c*x]))/(4*x^4) - (3*c^4*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])*ArcTan[E^ArcCosh[c*x]])/(4
*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, (-I)*E^ArcCosh[c*x]])/(Sqrt
[-1 + c*x]*Sqrt[1 + c*x]) - (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, I*E^ArcCosh[c*x]])/(Sqrt[-1 + c*
x]*Sqrt[1 + c*x])

________________________________________________________________________________________

Rubi [A]  time = 0.836621, antiderivative size = 333, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 9, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {5798, 5740, 5738, 30, 5761, 4180, 2279, 2391, 14} \[ \frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{c x-1} \sqrt{c x+1}}-\frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{c x-1} \sqrt{c x+1}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (c x+1) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{3 c^4 d \sqrt{d-c^2 d x^2} \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{4 \sqrt{c x-1} \sqrt{c x+1}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{c x-1} \sqrt{c x+1}}-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{c x-1} \sqrt{c x+1}} \]

Antiderivative was successfully verified.

[In]

Int[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^5,x]

[Out]

-(b*c*d*Sqrt[d - c^2*d*x^2])/(12*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (5*b*c^3*d*Sqrt[d - c^2*d*x^2])/(8*x*Sqrt
[-1 + c*x]*Sqrt[1 + c*x]) + (3*c^2*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(8*x^2) - (d*(1 - c*x)*(1 + c*x
)*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(4*x^4) - (3*c^4*d*Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x])*ArcTan
[E^ArcCosh[c*x]])/(4*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) + (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, (-I)*E^
ArcCosh[c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (((3*I)/8)*b*c^4*d*Sqrt[d - c^2*d*x^2]*PolyLog[2, I*E^ArcCosh[
c*x]])/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5740

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[((f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x]
+ (-Dist[(2*e1*e2*p)/(f^2*(m + 1)), Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Dist[(b*c*n*(-(d1*d2))^(p - 1/2)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sq
rt[-1 + c*x]), Int[(f*x)^(m + 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
&& IntegerQ[p - 1/2]

Rule 5738

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[((f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n)/(f*(m + 1)), x
] + (-Dist[(b*c*n*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f*(m + 1)*Sqrt[1 + c*x]*Sqrt[-1 + c*x]), Int[(f*x)^(m + 1)
*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Dist[(c^2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])/(f^2*(m + 1)*Sqrt[1 + c*x]*
Sqrt[-1 + c*x]), Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x]) /; FreeQ[{
a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && LtQ[m, -1]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 5761

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Dist[1/(c^(m + 1)*Sqrt[-(d1*d2)]), Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /
; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[n, 0] && GtQ[d1, 0] &&
 LtQ[d2, 0] && IntegerQ[m]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \frac{\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^5} \, dx &=-\frac{\left (d \sqrt{d-c^2 d x^2}\right ) \int \frac{(-1+c x)^{3/2} (1+c x)^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{x^5} \, dx}{\sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{\left (b c d \sqrt{d-c^2 d x^2}\right ) \int \frac{-1+c^2 x^2}{x^4} \, dx}{4 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (3 c^2 d \sqrt{d-c^2 d x^2}\right ) \int \frac{\sqrt{-1+c x} \sqrt{1+c x} \left (a+b \cosh ^{-1}(c x)\right )}{x^3} \, dx}{4 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{\left (b c d \sqrt{d-c^2 d x^2}\right ) \int \left (-\frac{1}{x^4}+\frac{c^2}{x^2}\right ) \, dx}{4 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (3 b c^3 d \sqrt{d-c^2 d x^2}\right ) \int \frac{1}{x^2} \, dx}{8 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (3 c^4 d \sqrt{d-c^2 d x^2}\right ) \int \frac{a+b \cosh ^{-1}(c x)}{x \sqrt{-1+c x} \sqrt{1+c x}} \, dx}{8 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{-1+c x} \sqrt{1+c x}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{\left (3 c^4 d \sqrt{d-c^2 d x^2}\right ) \operatorname{Subst}\left (\int (a+b x) \text{sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{-1+c x} \sqrt{1+c x}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{3 c^4 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (3 i b c^4 d \sqrt{d-c^2 d x^2}\right ) \operatorname{Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (3 i b c^4 d \sqrt{d-c^2 d x^2}\right ) \operatorname{Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{-1+c x} \sqrt{1+c x}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{3 c^4 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{\left (3 i b c^4 d \sqrt{d-c^2 d x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{\left (3 i b c^4 d \sqrt{d-c^2 d x^2}\right ) \operatorname{Subst}\left (\int \frac{\log (1+i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}\\ &=-\frac{b c d \sqrt{d-c^2 d x^2}}{12 x^3 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{5 b c^3 d \sqrt{d-c^2 d x^2}}{8 x \sqrt{-1+c x} \sqrt{1+c x}}+\frac{3 c^2 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{8 x^2}-\frac{d (1-c x) (1+c x) \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{4 x^4}-\frac{3 c^4 d \sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{4 \sqrt{-1+c x} \sqrt{1+c x}}+\frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}-\frac{3 i b c^4 d \sqrt{d-c^2 d x^2} \text{Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{8 \sqrt{-1+c x} \sqrt{1+c x}}\\ \end{align*}

Mathematica [A]  time = 1.18366, size = 574, normalized size = 1.79 \[ \frac{-9 i b c^4 d^2 x^4 (c x-1) \text{PolyLog}\left (2,-i e^{-\cosh ^{-1}(c x)}\right )+9 i b c^4 d^2 x^4 (c x-1) \text{PolyLog}\left (2,i e^{-\cosh ^{-1}(c x)}\right )-15 a c^4 d^2 x^4 \sqrt{\frac{c x-1}{c x+1}}+21 a c^2 d^2 x^2 \sqrt{\frac{c x-1}{c x+1}}+9 a c^4 d^{3/2} x^4 \sqrt{\frac{c x-1}{c x+1}} \log (x) \sqrt{d-c^2 d x^2}-9 a c^4 d^{3/2} x^4 \sqrt{\frac{c x-1}{c x+1}} \sqrt{d-c^2 d x^2} \log \left (\sqrt{d} \sqrt{d-c^2 d x^2}+d\right )-6 a d^2 \sqrt{\frac{c x-1}{c x+1}}-15 b c^4 d^2 x^4+15 b c^3 d^2 x^3+2 b c^2 d^2 x^2-15 b c^4 d^2 x^4 \sqrt{\frac{c x-1}{c x+1}} \cosh ^{-1}(c x)+21 b c^2 d^2 x^2 \sqrt{\frac{c x-1}{c x+1}} \cosh ^{-1}(c x)-9 i b c^5 d^2 x^5 \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )+9 i b c^5 d^2 x^5 \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )+9 i b c^4 d^2 x^4 \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )-9 i b c^4 d^2 x^4 \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )-2 b c d^2 x-6 b d^2 \sqrt{\frac{c x-1}{c x+1}} \cosh ^{-1}(c x)}{24 x^4 \sqrt{\frac{c x-1}{c x+1}} \sqrt{d-c^2 d x^2}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d - c^2*d*x^2)^(3/2)*(a + b*ArcCosh[c*x]))/x^5,x]

[Out]

(-2*b*c*d^2*x + 2*b*c^2*d^2*x^2 + 15*b*c^3*d^2*x^3 - 15*b*c^4*d^2*x^4 - 6*a*d^2*Sqrt[(-1 + c*x)/(1 + c*x)] + 2
1*a*c^2*d^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)] - 15*a*c^4*d^2*x^4*Sqrt[(-1 + c*x)/(1 + c*x)] - 6*b*d^2*Sqrt[(-1 +
c*x)/(1 + c*x)]*ArcCosh[c*x] + 21*b*c^2*d^2*x^2*Sqrt[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] - 15*b*c^4*d^2*x^4*Sqr
t[(-1 + c*x)/(1 + c*x)]*ArcCosh[c*x] + (9*I)*b*c^4*d^2*x^4*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - (9*I)*b*c^
5*d^2*x^5*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] - (9*I)*b*c^4*d^2*x^4*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]]
+ (9*I)*b*c^5*d^2*x^5*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]] + 9*a*c^4*d^(3/2)*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*
Sqrt[d - c^2*d*x^2]*Log[x] - 9*a*c^4*d^(3/2)*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2]*Log[d + Sqrt[d
]*Sqrt[d - c^2*d*x^2]] - (9*I)*b*c^4*d^2*x^4*(-1 + c*x)*PolyLog[2, (-I)/E^ArcCosh[c*x]] + (9*I)*b*c^4*d^2*x^4*
(-1 + c*x)*PolyLog[2, I/E^ArcCosh[c*x]])/(24*x^4*Sqrt[(-1 + c*x)/(1 + c*x)]*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.241, size = 570, normalized size = 1.8 \begin{align*} -{\frac{a}{4\,d{x}^{4}} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{{\frac{5}{2}}}}+{\frac{a{c}^{2}}{8\,d{x}^{2}} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{{\frac{5}{2}}}}+{\frac{a{c}^{4}}{8} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{{\frac{3}{2}}}}-{\frac{3\,a{c}^{4}}{8}{d}^{{\frac{3}{2}}}\ln \left ({\frac{1}{x} \left ( 2\,d+2\,\sqrt{d}\sqrt{-{c}^{2}d{x}^{2}+d} \right ) } \right ) }+{\frac{3\,a{c}^{4}d}{8}\sqrt{-{c}^{2}d{x}^{2}+d}}+{\frac{5\,bd{\rm arccosh} \left (cx\right ){c}^{4}}{ \left ( 8\,cx+8 \right ) \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{\frac{5\,bd{c}^{3}}{8\,x}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}-{\frac{7\,b{c}^{2}d{\rm arccosh} \left (cx\right )}{ \left ( 8\,cx+8 \right ){x}^{2} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{bdc}{12\,{x}^{3}}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}+{\frac{bd{\rm arccosh} \left (cx\right )}{ \left ( 4\,cx+4 \right ){x}^{4} \left ( cx-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+{{\frac{3\,i}{8}}b{\rm arccosh} \left (cx\right )d{c}^{4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\ln \left ( 1+i \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}-{{\frac{3\,i}{8}}b{\rm arccosh} \left (cx\right )d{c}^{4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\ln \left ( 1-i \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}+{{\frac{3\,i}{8}}bd{c}^{4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\it dilog} \left ( 1+i \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}}-{{\frac{3\,i}{8}}bd{c}^{4}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }{\it dilog} \left ( 1-i \left ( cx+\sqrt{cx-1}\sqrt{cx+1} \right ) \right ){\frac{1}{\sqrt{cx-1}}}{\frac{1}{\sqrt{cx+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x)

[Out]

-1/4*a/d/x^4*(-c^2*d*x^2+d)^(5/2)+1/8*a*c^2/d/x^2*(-c^2*d*x^2+d)^(5/2)+1/8*a*c^4*(-c^2*d*x^2+d)^(3/2)-3/8*a*c^
4*d^(3/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x)+3/8*a*c^4*(-c^2*d*x^2+d)^(1/2)*d+5/8*b*d*(-d*(c^2*x^2-1))
^(1/2)/(c*x+1)/(c*x-1)*arccosh(c*x)*c^4+5/8*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)^(1/2)/x/(c*x-1)^(1/2)*c^3-7/8*b
*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)/x^2/(c*x-1)*arccosh(c*x)*c^2-1/12*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)^(1/2)/x
^3/(c*x-1)^(1/2)*c+1/4*b*d*(-d*(c^2*x^2-1))^(1/2)/(c*x+1)/x^4/(c*x-1)*arccosh(c*x)+3/8*I*b*(-d*(c^2*x^2-1))^(1
/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4-3/8*I*b*(-d*(c^2*
x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*arccosh(c*x)*ln(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4+3/8*I*b
*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4-3/8*I*b
*(-d*(c^2*x^2-1))^(1/2)/(c*x-1)^(1/2)/(c*x+1)^(1/2)*dilog(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*d*c^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (a c^{2} d x^{2} - a d +{\left (b c^{2} d x^{2} - b d\right )} \operatorname{arcosh}\left (c x\right )\right )} \sqrt{-c^{2} d x^{2} + d}}{x^{5}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="fricas")

[Out]

integral(-(a*c^2*d*x^2 - a*d + (b*c^2*d*x^2 - b*d)*arccosh(c*x))*sqrt(-c^2*d*x^2 + d)/x^5, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(3/2)*(a+b*acosh(c*x))/x**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-c^{2} d x^{2} + d\right )}^{\frac{3}{2}}{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )}}{x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/x^5,x, algorithm="giac")

[Out]

integrate((-c^2*d*x^2 + d)^(3/2)*(b*arccosh(c*x) + a)/x^5, x)